Quantification of the Dust Layer Effect in the Temperature Profiles Due to the Stratification of Aerosol Absorption

J. L. Gómez-Amo ^{1,2}, A. di Sarra¹, D. Meloni¹ ¹ Lab. For Earth observations and analyses, ENEA, Rome, Italy ² University of Valencia, Burjassot, Spain

ENEN

7th INTERNATIONAL WORKSHOP ON SAND/DUSTSTORMS AND ASSOCIATED DUSTFALL

Cesa

2-4 December 2013 | ESA-ESRIN | Frascati (Rome), Italy

Background - Motivation

Uncertainties on the aerosol effect on climate are mainly due to:

- a. uncertainties in the aerosol vertical profile
- b. uncertainties in the aerosol absorption

Errors in the model determination of temperature profiles are related with the aerosol load (Carmona et al., 2008)

Background - Motivation

Carmona et al., (2008)

Fig. 3. Model temperature error (in K; observed temperature minus ECMWF temperature prediction to 24 h after interpolation to the station coordinate) vs. MODIS Terra aerosol optical thickness (AOT) in central Italy during January 2001–March 2002.

2-4 December 2013 | ESA-ESRIN | Frascati (Rome), Italy

Objective

How much the aerosol absorption can affect the temperature profiles?

Using a simple approach based on:

- a. a detailed aerosol stratification (measurements)
- b. radiative transfer simulations

Wavelength (nm)	AOD	SSA	AE = 0.3
415	0.318	0.76	
550	0.292	0.81	
868	0.253	0.92	

Cesa

→ 7th INTERNATIONAL WORKSHOP ON SAND/DUSTSTORMS AND ASSOCIATED DUSTFALL

Radiative Transfer simulations

Modtran 4.2

a. input parameters:

- Lidar extinction profile (125 m resolution)
- Meteorological profile (radiosonde, Pratica di Mare)
- aerosol optical properties (2 Layers)

b. output:

- Radiative fluxes (vertically resolved): shortwave and longwave

Radiative Transfer simulations

Aerosol radiative forcing

$$ARF = \left(F^{\downarrow} - F^{\uparrow}\right)_{aerosol} - \left(F^{\downarrow} - F^{\uparrow}\right)_{aerosol\ free}$$

Aerosol forcing efficiency

$$AFE = \frac{ARF}{AOD_{550nm}}$$

Heating rate profiles

$$\frac{\Delta T}{\Delta t} = -\frac{g}{Cp} \frac{\Delta Fnet}{\Delta p}$$

Aerosol scenarios

- Aerosol extinction and asymmetry are kept fixed (column-integrated measurements)
- Aerosol absorption (2 Layers):
 ABL: Absorbing BL aerosol type (Urban)
 SBL : Scattering BL aerosol type (clean marine)
 HL: Homogeneous layer (column-integrated measurements)
- Spectral absorption in BL by OPAC database (Hess et al., 1998)

ENEN

7th INTERNATIONAL WORKSHOP ON SAND/DUSTSTORMS AND ASSOCIATED DUSTFALL

Aerosol scenarios

- In the shortwave, the absorption of the dust layer:

 $AOD_{Column}(\lambda) = AOD_{BL}(\lambda) + AOD_{DDL}(\lambda)$ $SSA(\lambda) \cdot AOD(\lambda)_{Column} = SSA(\lambda) \cdot AOD(\lambda)_{BL} + SSA(\lambda) \cdot AOD(\lambda)_{DDL}$

- In the longwave, the aerosol optical properties of BL and DDL: OPAC database (Hess et al., 1998)

Aerosol radiative effects

In a daily basis:

(HL-ABL)/HL (%)		(HL-SBL)/HL (%)			
surface	toa	atm	surface	toa	atm
-13	16	-22	11	-13	17

Heating rate profiles

Shortwave

- Heating in the dust layer (up to 2.2 K/day)
- Differences in the boundary layer:

Cesa

TED DUSTFALL

- HL: heating (up to 1.3 K/day)
- ABL: heating (up to 2 K/day)
- SBL: cooling

Heating rate profiles

Longwave

sza = 10º

sza = 20° sza = 30°

sza = 40° sza = 50° sza = 60° sza = 65° sza = 70° sza = 75° sza = 80° sza = 85°

- Cooling in the dust layer (up to -0.5 K/day)
- Heating in the boundary layer:
 - *HL: mean HR* = 0.1 *K*/day
 - **ABL:** mean HR = 0.25 K/day
 - **SBL:** mean HR = 0.25 K/day

Cesa

TED DUSTFALL

Heating rate profiles

All wave = shortwave + longwave

- Net heating
- Different longwave/allwave contributions:
 - Dust layer: 23-26%
 - Boundary layer:
 - HL: 9%
 - **ABL:** 12%
 - **SBL:** 88%

Cesa

TED DUSTFALL

Effects on the temperature profiles

- 72h forward run

$$\Delta T = HR_{aerosol} \cdot \Delta t + T_1$$

- Assumptions:

a. Aerosol situation is not varying during the 72h

b. The temperature evolution is due to the aerosol radiative heating/cooling

Effects on the temperature profiles

Summary and conclusions

- ✓ The aerosol radiative impact present strong dependence on the vertical distribution of the aerosol absorption
- ✓ The ABL and SBL cases present an opposite deviation with respect to the forcing efficiency obtained for the HL case
- \checkmark The relative differences larger than 10% of the HL case values

Regarding to the heating rate profiles

- \checkmark A net heating effect is obtained within the whole aerosol layer
- ✓ Part of the shortwave heating is offset by the longwave cooling within the dust layer
- ✓ Different longwave/allwave contributions are observed in the BL that cause different evolution of the temperature
- ✓ Larger absorption in the boundary layer cause a notable increase of the temperature after 24h

